本篇文章給大家談談《啤酒醪液流速》對應的知識點,希望對各位有所幫助。
本文目錄一覽:
- 1、啤酒釀造中,麥汁與醪液區別?
- 2、啤酒的釀造方法,讓自個喝上健康扎啤
- 3、啤酒設計中糖化醪干物質百分比19.61,醪液密度是多少啊
- 4、啤酒廠都哪些環節需要用水
- 5、啤酒三次煮出糖化法中為什么每次只把三分之一的醪液煮沸而不是全部?
- 6、啤酒液微生物控制
啤酒釀造中,麥汁與醪液區別?
麥汁
麥汁是釀造啤酒的原料,是通過浸泡麥芽得到的,通過發酵變為啤酒。
醪液
是指發酵后獲得的液體,其中包括發酵產品和
發酵培養
液以及一些中間產物。
狹義的是指用發酵方法
制酒
所得出的液體,也就是啤酒本身。
啤酒的釀造方法,讓自個喝上健康扎啤
啤酒是我國第三大飲料。特別是在飯桌上,最常見的就是酒了,但是現在的商家為了賺取一定的利益,就現在會有很多的假酒出現,為了能夠喝都純正的啤酒,我們在家里是可以自己釀造的。那么釀造啤酒有什么方法呢?一起到 啤酒文化 看看吧!
麥芽制造
有以下6道工序。大麥貯存:剛收獲的大麥有休眠期,發芽力低,要進行貯存后熟。大麥精選:用風力、篩機除去雜物,按麥粒大小分級。浸麥:浸麥在浸麥槽中用水浸泡2至3日,同時進行洗凈,除去浮麥,使大麥的水分浸麥度達到42~48%。
發芽:浸水后的大麥在控溫通風條件下進行發芽形成各種使麥粒內容物質進行溶解。發芽適宜溫度為13~18℃,發芽周期為4~6日,根芽的伸長為粒長的1~1.5倍。長成的濕麥芽稱綠麥芽。
焙燥:目的是降低水分,終止綠麥芽的生長和的分解作用,以便長期貯存;使麥芽形成賦予啤酒色、香、味的物質;易于除去根芽,焙燥后的麥芽水分為3~5%。貯存:焙燥后的麥芽,在除去麥根,精選,冷卻之后放入混凝土或金屬貯倉中貯存。
釀造
有以下5道工序。主要是糖化、發酵、貯酒后熟3個過程。
原料粉碎:將麥芽、大米分別由粉碎機粉碎至適于糖化操作的粉碎度。
糖化:將粉碎的麥芽和淀粉質輔料用溫水分別在糊化鍋、糖化鍋中混合,調節溫度。糖化鍋先維持在適于蛋白質分解作用的溫度(45~52℃)(蛋白休止)。將糊化鍋中液化完全的醪液兌入糖化鍋后,維持在適于糖化(β-淀粉和α-淀粉)作用的溫度(62~70℃)(糖化休止),以制造麥醪。
麥醪溫度的上升方法有浸出法和煮出法兩種。蛋白、糖化休止時間及溫度上升方法,根據啤酒的性質、使用的原料、設備等決定用過濾槽或過濾機濾出麥汁后,在煮沸鍋中煮沸,添加酒花,調整成適當的麥汁濃度后,進入回旋沉淀槽中分離出熱凝固物,澄清的麥汁進入冷卻器中冷卻到5~8℃。
發酵:冷卻后的麥汁添加酵母送入發酵池或圓柱錐底發酵罐中進行發酵,用蛇管或夾套冷卻并控制溫度。進行下面發酵時,最高溫度控制在8~13℃,發酵過程分為起泡期、高泡期、低泡期,一般發酵5~10日。發酵成的啤酒稱為嫩啤酒,苦味犟,口味粗糙,CO2含量低,不宜飲用。
啤酒設計中糖化醪干物質百分比19.61,醪液密度是多少啊
你所說的糖化醪干物質,是不是通過稱重得來?也就是取一定量的醪液稱重,在將醪液烘干(絕干狀態)再稱重?
如果是這樣檢測得來的數據,個人理解,可否這樣估算:假設你取了100g醪液,其中絕干物質為19.61g,那么水分為100-19.61=80.39g。密度=質量/體積,絕干物質體積系數為0.8(啤酒行業大生產一般按此系數計算麥芽的體積),也就是密度=100g/(80.39ml+19.61*0.8ml)=1.0408g/ml。
啤酒廠都哪些環節需要用水
啤酒的釀造工序:麥子-麥牙-榨汁-加入啤酒花-發酵-殺菌(熟啤酒,鮮啤酒沒有殺菌的過程)-裝瓶
白酒的釀造工序:谷物-榨汁-發酵-蒸餾-發酵裝瓶
2.1.1原料加工處理;啤酒釀造需要四種原料:大麥、酒花、水和酵母。這些原料的質量決定著所生產啤酒的質量。了解這四種原料的特性及其對工藝的影響,是對起進行加工處理的前提,只有這樣才能有針對性地進行工藝控制。
2.1.1.1麥芽的制備大麥為啤酒釀造提供必需的淀粉,這些淀粉在啤酒廠的糖化車間被轉變成可發酵性浸出物。種植適合釀造啤酒的大麥品種非常重要,因為這些這些大麥制成的麥芽,浸出物含量很高。麥芽有大麥制成,制麥芽的目的是在大麥顆粒中形成酶并使大麥顆粒中的某些物質發生轉化。因此大麥需要發芽并只能發芽一段時間。有大麥制成的麥芽,其外表幾乎和大麥一樣。麥芽的制造包括如下幾個步驟:大麥進廠接受,清選,分級和輸送;大麥的干燥與儲存;大麥浸泡;發芽;麥芽干燥;干燥后的麥芽處理;
2.1.1.2原料的稱量本設計的投料量比較大,所以用傳統的傾翻計量稱就不再適用,本設計里面使用的是電子計量稱,該稱為了能夠準確的稱量,投料過程不能太快,它分為:前容器,稱重容器和后容器。
2.1.1.3麥芽的粉碎糖化是為使麥芽中的酶盡可能作用并分解麥芽中的內容物,麥芽必須粉碎。粉碎是一個機械破碎過程。在這一過程中,必須保護麥皮,因為麥皮將作為過濾槽中的過濾介質。糖化是要盡可能是酶與麥芽內容物接觸并分解。對此需將麥芽粉碎,粉碎的越細,則酶的作用面就越大,也能更好地對內容物進行分解。麥芽粉碎越細,麥糟體積就越??;麥芽粉碎越細,麥糟層的滲透性就越差,麥糟就越快被吸緊,過濾時間就越長。所以麥芽的粉碎不可以過細。粉碎大體上可分為干法粉碎和濕法粉碎,本設計采用的是濕法粉碎,麥芽粉碎前,若對麥芽進行浸泡處理,那么麥皮以及麥芽內容物就會吸水分,變得有彈性,麥芽內容物也能從麥皮中被分離出來并被粉碎,而麥皮幾乎沒有損傷,使過濾能力得以改善,粉碎得很細的麥芽內容物能更好地被分解。濕法粉碎機的上部有一個出口為錐型的麥芽倉,在麥倉中進行浸泡。粉碎質量的好壞會影響:糖化工藝,碘檢時間,麥汁過濾,糖化車間收得率,發酵,啤酒的可濾性,啤酒的色澤、口味和總體風味。
2.2糖化糖化是麥汁制備中最重要的過程。在糖化過程中,水與麥芽粉碎無進行混合,由此使麥芽的內容物溶出,獲得浸出物。
2.2.1糖化過程中的物質變化
2.2.1.1糖化的目的`麥芽粉碎物中的內容物大多是非水溶性的,而進入啤酒中的物質,只能是水溶性的物質,因此我們必須通過糖化,使粉碎物的不溶物轉變為水溶性物質。我們把所有進入溶液的物質稱為浸出物。糖化的目的就是,盡最大的可能形成多的、質量好的浸出物。而浸出物的主要數量只能在糖化中通過酶的作用產生。酶在其最佳溫度范圍內發揮作用。
2.2.1.2酶的特性酶的在重要特性是它分解底物時的活力。這種活力取決于各種因素:
1.溫度:酶的活力取決于溫度。在一定溫度下酶的活力是可以改變的。在低溫下,酶活力幾乎可以無限度地保持,但隨著溫度的上升,酶的活力迅速下降。
2.PH值:因為隨著PH值的變化,酶的卷曲結構也會發生改變,所以酶的活力也取決于PH值。以下物質的分解過程對釀造來講十分重要:淀粉分解;β—葡聚糖(麥膠物質)的分解;蛋白質的分解。
2.2.1.3淀粉的分解
2.2.1.3.1淀粉必須徹底分解成糖以及不使碘液變色的糊精。淀粉的徹底分解,不僅僅是因為經濟原因,而且不可分解的殘余淀粉還會導致啤酒出現糊化渾濁。淀粉分解分為三個過程:糊化,液化,糖化。
1.糊化:就是指淀粉顆粒在熱水溶液中膨脹、破裂。在這種粘性溶液中的游離淀粉分子相對未糊化的淀粉來說,淀粉酶可較好的將其分解。糊化后的淀粉不再聚結成固體淀粉顆粒,因此在液體中含有的酶可以直接將它們很快分解。相反,未糊化淀粉的分解則需要很多天。
2.液化:液化就是通過α—淀粉酶的作用,使已糊化過的淀粉液粘度降低。
3.糖化:含義是通過淀粉酶的作用,把已液化的淀粉分解成麥芽糖和糊精。它的檢查是通過“碘檢”進行的。檢查淀粉分解可借助于0.02mol/L的碘液(碘和碘化鉀的酒精溶液)進行,稱為“碘檢”。碘檢時,一定要先將醪液樣冷卻后才能進行。碘檢原理:在室溫下,碘液遇到淀粉分子和較大的糊精時,呈藍色至紅色,而所有堂分子和較小分子的糊精則不能使碘液變色。碘液遇到高分子和中分子的分支糊精后還會呈現紫色至紅色。這一變色過程并不很容易辨認,但能表明麥汁碘檢不正常。
在糖化過程中,重要產生以下可被啤酒酵母發酵和不可被啤酒酵母發酵的淀粉分解物:
1糊精:不可發酵;
2.麥芽三糖:能被所有高發酵度酵母發酵。只有當麥芽糖發酵完后,酵母才能分解它,即只有在后酵儲存時分解(后發酵性糖);
3.麥芽糖及其他雙糖:能被酵母又好又快地發酵(主發酵性糖);
4.葡萄糖:最先被酵母分解(起發酵性糖);
2.2.1.3.2各種因素對淀粉分解的影響
1.溫度:在62~64℃長時間的糖化,可以得到最終發酵度較高的啤酒;若超過此溫度,在72~75℃長時間糖化,則得到最終發酵度低、含糊精豐富的啤酒。糖化溫度的影響是非常大的,所以糖化時在各種淀粉酶的最佳作用溫度下進行休止,即:形成麥芽糖的休止溫度在62~65℃β—淀粉酶的最佳作用溫度;糖化休止溫度在72~75℃α—淀粉酶的最佳作用溫度;糖化終止并醪溫度在76~78℃。
2.時間:在糖化過程中,酶的作用并不是均勻的??蓪⒚傅幕盍澐譃閮蓚€時間階段:
(1)10~20min后達到酶的最大活力。在溫度62~68℃之間,酶的最高活力較大。
(2)40~60min后,酶的活力下降較快,然后下降變慢。
1.PH值:醪液的PH值在5.5~5.6時,可以看作是兩種淀粉酶的最佳PH值范圍。與較高的醪液Ph值相比較,在此PH值下可提高浸出物濃度。形成叫多的可發酵性糖,提高最終發酵度。
2.2.1.4淀粉分解的檢查糖化時,必須將淀粉徹底分解致碘檢正常狀態;糖化終了時,借助碘檢檢查淀粉分解情況。由于碘液遇到淀粉和較大的糊精僅在冷醪中顯色,因此必須將碘檢醪液樣品冷卻。將冷醪液放在白瓷盆上或石膏棒上,然后滴入一滴0.02mol/L的黃色碘液。糖化終了的醪液,碘檢時絕對不能出現變色;在麥汁煮沸終了,還必須進行碘檢(后糖化)。如果碘檢是出現變色現象,則說明此麥汁碘檢不正常。人們稱此為“藍色糖化”。那么由此生產的啤酒會出現“糊化渾濁”,因為較大分子的糊精是非溶性的。采取的不久措施是:取麥芽浸出液或頭道麥汁添加到發酵中的麥汁里。
2.2.1.5β—葡聚糖的分解β—葡聚糖在啤酒釀造中有重要意義,因為它導致過濾困難。而高分子的β—葡聚糖凝膠具有舉足輕重的意義,糖化過程中出現的各種剪切力會將β—葡聚糖分子擴展開來彼此聯結在一起,通過氫鍵形成β—葡聚糖螺旋體,此螺旋體具有形成凝膠的趨勢,導致過濾困難。β—葡聚糖通過β—葡聚糖酶分解,最佳作用溫度為45~50℃。在60~65℃下通過β—葡聚糖溶解酶的作用仍能形成β—葡聚糖。β—葡聚糖溶解酶十分耐熱,在麥芽干燥時受損不大,在65~70℃時,β—葡聚糖不能再分解,此時β—葡聚糖酶已經失活,未分解的β—葡聚糖會給糖化過程帶來問題。
2.2.1.6生物酸化醪液的PH值是酶促反應的一個重要參數。將醪的PH降至5.5~5.6會有以下好處:較高的最終發酵度;蛋白溶解完全,由此形成更多的高分子蛋白分解物和低分子蛋白分解物;黏度降低;加速麥汁的過濾;減輕麥汁煮沸時的升色。醪液和麥汁酸化的優點:縮短或優化糖化時間;麥汁過濾快、迅速;麥汁制備過程中色度上升較少;糖化收得率較高,不過苦味物質收得率會降低;醪液中的鋅離子穩定性有所提高;主酵和后酵迅速;起泡性和泡持性好;啤酒口味柔和;口味穩定性好。降低PH的方法:對釀造用水進行脫CO2處理;添加“酸麥芽”;生物酸化。
2.2.2糖化容器本設計的糖化車間所需要的容器是,糖化鍋兩個,糊化鍋兩個,壓率機一個,煮沸鍋兩個,回旋沉淀槽兩個,待槽一個。各個容器的計算如下:
2.2.3糖化下料糖化下料是指盡最大可能使麥芽粉碎物,在預定溫度下與糖化用水強烈混合。2.2.3.1糖化用水麥芽粉碎物與糖化用水的混合比例非常重要,它決定頭道麥汁的濃度。100kg糖化投料加上300L糖化用水,可得到濃度為20%的頭道麥汁。生產淺色啤酒:應選擇較多的糖化用水,料水比為1:4~1:5。由此是酶促反應加快。
2.2.3.2投料溫度原則上可在任何溫度下投料。但是,由于酶有最佳溫度的特性,投料溫度也就顯得很重要,以使酶能充分發揮作用。
2.2.3.3糖化用水和麥芽粉碎物的混合糖化投料時,糖化用水必須和麥芽粉充分混合,決不能結塊。為使糖化用水與麥芽粉充分混合,應在下料管在中安裝麥水混合器。在麥水混合器中,投料溫度下的糖化用水以水霧形式噴出,而麥芽粉從上向下穿過此水霧區,兩者得到均勻混合,沒有結塊產生。無結塊的糖化投料及攪拌器的工作好對此具有重意義。
2.2.4糖化工藝
2.2.4.1糖化就是將醪液的溫度提高到酶的最佳作用溫度休止,使酶充分發揮作用。休止溫度階段如下:50℃蛋白休止;62℃~65℃麥芽糖形成休止;70℃~75℃糖化休止;78℃并醪糖化終止。根據升溫的方式不同,人們把糖化的工藝劃分為兩類:浸出法和煮出法。在浸出法工藝中,就是把總醪液加熱至幾個溫度休止階段進行休止,最后達到并醪糖化終止溫度。在此工藝中沒有分醪煮費過程。在煮出法工藝中,通過分出一部分醪液,并煮費,然后把煮費的醪液重新泵入到余下的未煮費醪液中,這樣使混合醪液的溫度達到下一步較高的休止溫度。
2.4.2糖化工作的幾個要點選擇糖化工藝時,為使生產出的醪液,麥汁在組成上要達到所期望的啤酒類型要求,這樣就要注意以下幾點:
2.4.3麥芽質量特別是用新大麥品種制成的麥芽,起蛋白溶解度常常很高。如果將這樣的麥芽在50℃進行長時間的休止,就回導致過多的高分子蛋白質別分解,啤酒口味將過于淡薄,且泡持性能差。若麥芽的細胞溶解很好,那么就不要在45℃~50℃度休止,而選擇58℃~62℃度的糖化投料溫度。如果麥芽細胞壁溶解不足,在糖化是欲促進其繼續分解,而又不使蛋白質分解繼續進行,則糖化下料溫度應選在35℃。應為在此溫度下對溫度敏感的β-葡聚糖酶可以作用,是胚乳得到很好的分解,而蛋白質去不被分解。
2.4.4添加熱水升溫在制作淺色啤酒時,料水比為1:4~1:5。如果在35℃(或50)進行濃醪投料(麥芽:水=1:2.5),然后在醪液中加入82~85度的熱水,使醪液溫度升到下一次的休止溫度50度(或63度),分解過程,特別是蛋白質分解過程,也因此而受到抑制。添加熱水后,也就達到了正常的料水比例。對于本設計是年產30萬噸的啤酒廠,往往過剩的熱水比較多,采取這樣的升溫方式可以節約能源。
2.4.5酶與麥芽組分的最佳接觸良好的糖化工作是使麥芽組成部分與溶入水中的酶保持最佳接觸,以使酶的分解作用得以充分發揮,這一點十分重要,為使酶促反應完全,糖化下料時應使麥芽粉和水充分混合。攪拌器在糖化中起著重要的作用:本設計不再使用強烈攪拌,而是根據鍋內容積通過變速(頻率調節)電動機以分級方式或無級方式提高攪拌器轉速。為能分出濃醪,攪拌器要先停止運行5~10分鐘,以使未溶解的麥芽組分沉降到鍋底。合醪后攪拌器以中速再攪拌30min。強烈的攪拌總會將空氣帶入醪液中,另外會產生剪切力。剪切力在此的含義是:在醪液、麥汁和啤酒中,含有許多由高分子化合物組成的物質,或者像結構復雜的酵母細胞之類的物質。通過較大的壓差,這些小顆粒別擠壓,導致結構改變或完全消失。
2.5麥汁過濾糖化過程結束后的醪液中含有水溶性和非水溶性的物質。浸出物的水溶液叫“麥汁”。非水溶性的物質被稱為“麥糟”。啤酒廠生產僅用麥汁。為達到此目的,就必須盡最大可能是麥汁完全與麥糟分離,此分離過程叫做“麥汁過濾”。、麥汁過濾是要盡最大可能獲取浸出物,麥汁過濾是一個過濾過程,在這個過程中,麥糟起著過濾介質的作用。麥汁過濾可分為兩個階段:頭道麥汁過濾和洗糟。
2.5.1糖化用水和洗糟用水從麥糟中流出的麥汁叫“頭道麥汁”。頭道麥汁過濾后,在麥糟中仍滯留有浸出物。為了提高經濟效益,必須提取這些浸出物。也就是說,頭道麥汁過濾完后必須洗糟。洗糟時麥汁的濃度越來越稀。為了保證過濾終了的麥汁濃度,頭道麥汁濃度必須高于將要發酵的麥汁濃度,大約高出4%~8%。用熱水溶出滯留在麥糟中的浸出物的過程稱為洗糟。洗糟過程中過濾出的低濃度麥汁叫“洗糟麥汁”。洗糟麥汁濃度剛開始時迅速下降,后來則緩慢下降,因為從麥糟中越來越難洗出浸出物。洗糟水量越多,則麥糟中浸出物的洗出量就越多,浸出物的收得率就越高。但是,洗糟用水量越多,則煮沸時必須蒸發掉的水分就越多。因此,必須在以下因素中找到一個折中點:過濾時間和浸出物收得率;麥汁煮費時間和能源費用頭道麥汁濃度越高,則頭道麥汁就越少,因而洗糟就必須越多。而頭道麥汁濃度越高,則浸出物收得率就越高。對此過濾溫度有極大的意義;過濾溫度越高,則麥汁黏度就越低:這意味著在100℃過濾時,速度最快。但必須考慮到在洗糟時,仍有未溶解的淀粉會從麥糟中溶出,只要溫度沒超過80℃,α—淀粉酶就沒有失活,還可以繼續進行后糖化。所以100℃的過濾總會導致形成所謂的“藍色糖化”;因為α—淀粉酶在80℃以上被破壞,所以過濾溫度必須保持在80℃以下。
2.6洗糟殘水洗糟一直要進行到達滿鍋麥汁的濃度為止。最后濾出的低度麥汁,被稱為“洗糟殘水”。生產“全啤酒”時,洗糟殘水的濃度仍有0.5%~0.6%。有時可將洗糟殘水作為下次投料的糖化用水。不過長時間的洗糟,以及洗糟殘水的重新利用,可以提高浸出率,但對啤酒的質量不利。利用未處理的洗糟殘水時,除了要考慮質量外,還要考慮不斷增長的能源費用。只有當浸出物的增加所帶來的經濟效益高于蒸發水分所消耗能源費用時,才能體現起經濟性。
啤酒三次煮出糖化法中為什么每次只把三分之一的醪液煮沸而不是全部?
啤酒三次煮出糖化法中為什么每次只有1/3的fitter而不是全部,這個是比例而已。
啤酒液微生物控制
酵母是決定啤酒質量的最重要因素之一。它與原料一起決定了啤酒的pH、香味和最終質量。健壯與發酵旺盛的酵母是決定啤酒香味成分的多寡與低聚糖含量高低的關鍵。 冷卻麥汁接種酵母后,酵母在充氧條件下,以麥汁中的氨基酸為主要氮源,可發酵性糖類為主要碳源,進行有氧呼吸和旺盛的增殖。當醪液中的氧消耗完畢時,酵母菌便在缺氧條件下,進行酒精發酵。其生化過程十分復雜,在啤酒酵母所含酶系的作用下,其主要代謝產物是酒精和二氧化碳,此外還有一系列的發酵副產物,如常有少量的甘油生成。雜醇油包括戊醇、異戊醇、異丁醇及其酯類。它們分別由異亮氨酸、亮氨酸和纈氨酸生成。啤酒中生成的雜醇油含量不能過高,否則會使啤酒口味變差,甚至引起頭痛。此外,還可能生成一些其他的醇、醛和酸,取決于酵母菌株、發酵培養基的成分和發酵時的溫度。雙乙酰具有啤酒中最不受歡迎的黃油香氣和口味,它是由某些酵母生成的,釀造時,應防止雙乙酰的累積量超標。 在啤酒廠里,上一批的酵母泥,常被用作下一批的接種物而重新使用,所以控制酵母的質量甚為重要。因為任何變異或退化,在反復循環使用中都會越來越嚴重。并且那些比酵母生長快的雜菌也會大量增殖。故發酵過程中對酵母進行例行檢查是很重要的。 在可能造成污染的常見雜菌中,最重要的有巴氏乳桿菌和啤酒片球菌以及某些野生酵母。變形黃桿菌(Flavobacterium proteus)常出現在達到厭氧狀態以前的早期啤酒發酵醪液中,此菌即便在啤酒中未留下活菌,也會在啤酒中留下邪雜味。產氣氣桿菌(Aerabacter aerogenes)是一種不污染啤酒而可能污染麥芽汁的雜菌。在啤酒中大多數致病菌在短時間內都會死亡。
關于《啤酒醪液流速》的介紹到此就結束了。